Nonlinear Forecasting with Many Predictors using Kernel Ridge Regression
نویسندگان
چکیده
This paper puts forward kernel ridge regression as an approach for forecasting with many predictors that are related nonlinearly to the target variable. In kernel ridge regression, the observed predictor variables are mapped nonlinearly into a high-dimensional space, where estimation of the predictive regression model is based on a shrinkage estimator to avoid overfitting. We extend the kernel ridge regression methodology to enable its use for economic time-series forecasting, by including lags of the dependent variable or other individual variables as predictors, as is typically desired in macroeconomic and financial applications. Monte Carlo simulations as well as an empirical application to various key measures of real economic activity confirm that kernel ridge regression can produce more accurate forecasts than traditional linear methods for dealing with many predictors based on principal component regression.
منابع مشابه
Modelling Issues in Kernel Ridge Regression
Kernel ridge regression is gaining popularity as a data-rich nonlinear forecasting tool, which is applicable in many different contexts. This paper investigates the influence of the choice of kernel and the setting of tuning parameters on forecast accuracy. We review several popular kernels, including polynomial kernels, the Gaussian kernel, and the Sinc kernel. We interpret the latter two kern...
متن کاملA Spectral Series Approach to High-Dimensional Nonparametric Regression
Abstract: A key question in modern statistics is how to make fast and reliable inferences for complex, high-dimensional data. While there has been much interest in sparse techniques, current methods do not generalize well to data with nonlinear structure. In this work, we present an orthogonal series estimator for predictors that are complex aggregate objects, such as natural images, galaxy spe...
متن کاملTime series forecasting by principal covariate regression
This paper is concerned with time series forecasting in the presence of a large number of predictors. The results are of interest, for instance, in macroeconomic and financial forecasting where often many potential predictor variables are available. Most of the current forecast methods with many predictors consist of two steps, where the large set of predictors is first summarized by means of a...
متن کاملA Novel Nonlinear Neural Network Ensemble Model Using K-PLSR for Rainfall Forecasting
In this paper, a novel hybrid Radial Basis Function Neural Network (RBF–NN) ensemble model is proposed for rainfall forecasting based on Kernel Partial Least Squares Regression (K–PLSR). In the process of ensemble modeling, the first stage the initial data set is divided into different training sets by used Bagging and Boosting technology. In the second stage, these training sets are input to t...
متن کاملA Large-Scale Gaussian Belief Propagation Solver for Kernel Ridge Regression
We introduce an efficient parallel implementation of a Kernel Ridge Regression solver, based on the Gaussian Belief Propagation algorithm (GaBP). Our approach can be easily used in Peer-to-Peer and grid environments, where there is no central authority that allocates work. Empirically, our solver has high accuracy in solving classification problems. We have tested our distributed implementation...
متن کامل